W3. Complex Networks: Hidden Geometry and Dynamics
Workshop organized by:
N. Gupte, M.M. Dankulov and B. Tadic
The influence of network structure on dynamics in many complex systems has been demonstrated in numerous studies with a detailed analysis of empirical data and theoretical approaches. Recent studies of networks representing various complex systems from the brain to large-scale social dynamics have revealed their higher-order architecture, which can be described as aggregates of simplexes (triangles, tetrahedrons, and higher cliques). Beyond the standard graph theory, these hidden structures are quantified by algebraic topology methods. This Special Session will bring together presentations exploring different complex systems concerning a) the structure of simplicial complexes, including the properties of the underlying topological graph (network); b) dynamic processes in a particular or co-evolving network structure; c) information topology and graph representations of time series. We expect research results based on empirical data analysis and theoretical and numerical modeling. The aim is to cover recent developments in these areas of research and to stimulate discussion toward an in-depth understanding of the role of higher-order connectivity in the emergence of functional properties of complex systems.