4. Statistical Physics of Environment, Climate and Ecosystems

Statistical Physics, Environment and Climate

P. Ditlevsen, D. Hristopulos

 

The aim of this workshop is to bring together contributions on theoretical,  experimental, and computational approaches to climate and environmental modeling which are inspired by statistical physics.

The workshop will focus on applications of statistical physics in the modeling of environmental systems and climate as well the analysis of environmental and climate data. Statistical physics has traditionally centered on the behavior of the microscopic systems. Environmental and climate processes, on the other hand, typically involve macroscopic systems. In spite of the difference in physical scales, statistical physics and environmental/climate modeling both  investigate partially determined systems and require a stochastic approach, thus creating the potential for interdisciplinary transfer of  knowledge.
 
The climate is governed by the interchange of energy and mass between atmosphere, oceans, icecaps, land masses and biosphere. From a dynamical systems perspective the climate can be seen as the long term mean of the state of the system, while from a statistical point, the climate can be seen as the equilibrium state as response to the external forcing and boundary conditions. In recent years the problem of understanding and determining the state of the climate has been attacked with different approaches, such as maximum entropy principles, scaling theories, networks, system reduction theories, bifurcations and critical transitions, just to mention some. These different approaches are rooted in statistical physics.  Statistical physics also influenced subsurface hydrology which adapted and incorporated methods and ideas from the theory turbulence (structure functions, perturbation expansions, closure schemes), statistical field theory (Feynman diagrams, Renormalization Group  theory, replica variational approach), and classical statistical mechanics (Liouville’s theorem, fractional Brownian motion). To date, statistical physics concepts are also used in seismology and other environmental processes. In addition, statistical and machine learning methods originating in statistical physics are used to analyze and process complex patterns in environmental data. This workshop aims to highlight such contributions and to present novel ideas and methods motivated by statistical physics that can lead to new environmental applications and insights into the Earth's climate.
 
A non-exclusive list of topics of interest includes novel computational and theoretical tools for the analysis of large spatiotemporal data sets, innovative approaches to complex  environmental processes and climate that combine nonlinear and stochastic components, methods that address the interaction of multiple scales, approaches for the reconstruction and simulation of non-Gaussian natural or artificial media, applications of stochastic differential equations to environmental processes, higher-order upscaling methods, applications  of complex network theory, statistical and stochastic models of extreme  events, and estimation of long-range correlations in environmental systems.  Physical phenomena of interest include (but are not limited to) the flow and transport of pollutants in the atmosphere, the ocean and the subsurface, natural hazards (earthquakes, fires, avalanches, and landslides), precipitation, global circulation and climate.

 

Modelling of Ecosystems: Role of Chaos and Noise

D. Valenti

 

During the last decades, theoreticians worked to devise deterministic models able to describe ecosystems in which spatial patterns and chaotic phenomena are present, such as (i) sudden switching, in marine ecosystems, from Deep Chlorophyll Maximum to Upper Chlorophyll Maximum, (ii) fast passage from coexistence to exclusion regime in the dynamics of two competing species, (iii) quick decline of predator for slight modifications of initial conditions in prey-predator systems.

Natural systems however are open structures subject to continuous, both deterministic and stochastic, perturbations coming from the environment. As a consequence, deterministic models can not explain some effects due to the intrinsic stochastic nature of real ecosystems. To fill this gap of knowledge, noise induced phenomena in population dynamics have been recently investigated in several theoretical studies, so that nowadays the role of random fuctuations is a well established subject in physics, mathematics, biology, and in their interdisciplinary applications. The goal of the current workshop is to report on very recent results obtained in fundamental issues of population dynamics by both deterministic approaches and stochastic modelling, while highlighting on the one hand the role of chaos, on the other hand the effects of random uctuations, in the dynamics of real ecosystems. Because of its interdisciplinary characteristics, the Workshop constitutes a forum suitable to favour the dialogue and the collaboration among scientists of different areas, such as mathematicians, physicists and biologists, in view of a further development and progress in the modelling of population dynamics and theoretical ecology.

News

SigmaPhi Awards

During the conference, six works selected out of all the oral and poster presentations have been awarded. The prizes have been supported by the following institutions: - European Phy...

>> Read more

School of Statistical Physics

New Trends in StatPhys: Organized by G. Caldarelli and G. Kaniadakis

>> Read more

EPS Young Researcher Grants

The Organizing Committee of the SigmaPhi 2017 International Conference is very please to inform that the EPS Young Researcher Grants have been assigned

>> Read more

Elsevier lectures

The publishing company Elsevier sponsors two lectures

>> Read more

Springer Nature Lectures

The publishing company Springer Nature sponsors three lectures

>> Read more

EPS-SNP Meeting

The summer board meeting of the European Physical Society - Statistical and Nonlinear Physics Division (EPS-SNP) will be held during the SigmaPhi2017 Conference

>> Read more

SigmaPhi2017 Europhysics Conference

The European Physical Society (EPS) has recognized the SigmaPhi2017 as Europhysics Conference.

>> Read more

Workshops

1. Kappa Distributions and Statistical Mechanics

Workshop organized by: G. Livadiotis, P. Yoon and K. Dialynas

>> Read more

2. Statistical Physics for the Digital Economy

Workshop organized by: T. Aste, G. Caldarelli, T. Di Matteo and G. Livan

>> Read more

3. Quantum Matter

Workshop organized by: S. Kourtis, D. Ellinas and J. Pachos

>> Read more

4. Statistical Physics of Environment, Climate and Ecosystems

Workshop organized by: P. Ditlevsen, D. Hristopulos and D. Valenti

>> Read more

5. Complexity and self-organization in biology and physiology

Workshop organized by: P. Paradisi and R. Metzler

>> Read more

6. Sociophysics and Econophysics

Workshop organized by: M.L. Bertotti and V. Constantoudis

>> Read more

Special Sessions

A1. Stochastic Processes in Complex Environments

Special Session organized by: J. Talbot and C. Mejia-Monasterio

>> Read more

A2. Kinetic Theory and its applications

Special Session organized by: G. Palasanzas and A. Rossani

>> Read more

A3. Information Geometry

Special Session organized by: D. Johnston, H. Matsuzoe, G. Ruppeiner and T. Wada

>> Read more

Scientific Sponsors 2017

 Statistical and Nonlinear

Physics Division 

Politecnico di Torino

Italy

 

 

 Department of Applied

Science and Technology

 

 ISC - CNR

Roma, Italy

 Technical University of

Crete Chania, Greece

 Aristotele University of

Thessaloniki, Greece

N.C.S.R. Demokritos

Athens, Greece

Italian National Institute

for Nuclear Physics

 

University of Cagliari

Italy

 

 

University of Leuven

Belgium

 

 

 

 

 Springer

 

 

 

 Entropy

 

 

 

 Elsevier

 

Chaos, Solitons

& Fractals

 

Modern Physics

Letters B

 

International Journal

of Modern Physics B