Baryon asymmetry from Barrow entropy: theoretical predictions and observational constraints.

Gaetano Luciano

University Of Lleida, Spain, Lleida, Spain

We investigate the generation of baryon asymmetry from the corrections brought about in the Friedmann equations due to Barrow entropy, which is a quantum-gravitational driven deformation of the standard Bekenstein-Hawking entropy-area law. In particular, by applying the gravity-thermodynamics conjecture one obtains extra terms in the Friedmann equations that change the Hubble function evolution during the radiation-dominated epoch. Hence, even in the case of standard coupling between the Ricci scalar and baryon current they can lead to a non-zero baryon asymmetry. In order to match observations we find that the Barrow exponent should lie in the interval $0.005 \le \Delta \le 0.008$, which corresponds to a slight deviation from the standard Bekenstein-Hawking entropy. The upper bound is tighter than the one of other observational constraints, however the interesting feature is that in the present analysis we obtain a non-zero lower bound. Nevertheless, this lower bound would disappear if the baryon asymmetry in Barrow-modified cosmology is generated by other mechanisms, not related to the Barrow modification.