Application of g-subdiffusion equations with the fractional Caputo time derivative with respect to another function in modeling of anomalous diffusion processes.

Tadeusz Kosztołowicz

Institute of Physics, Jan Kochanowski University, Kielce, Poland, Kielce, Poland

We consider a g-subdiffusion equation with a fractional Caputo time derivative with respect to another function g [1-6]. We derive the equation by means of a modified continuous time random walk model (the g-CTRW model) [2]. An interpretation of g-subdiffusion is that it is the ordinary subdiffusion process with a changed time scale controlled by a deterministic function g. The g-subdiffusion equation is shown to be quite general. Changing of a time scale can lead to changes in diffusion parameters and/or in the type of diffusion. Thus, the g-subdiffusion equation offers different possibilities for modeling diffusion, such as a process in which a type of diffusion evolves continuously over time. The g-subdiffusion equation can be solved by means of the g-Laplace transform method; the g-Laplace transform is a generalization of the "ordinary" Laplace transform [1,2]. By defining the function g appropriately, the equation describes a smooth transition from "ordinary" subdiffusion to other processes such as ultraslow diffusion [1], "ordinary" subdiffusion with changed parameters [3], and superdiffusion [6]. In the transition from subdiffusion to superdiffusion, the fundamental solution (the Green's function) for the g-subdiffusion equation takes the form of Green's function for superdiffusion described by the equation with the fractional Riesz derivative with respect to a space variable. We conclude that for a sufficiently long time the g-subdiffusion equation describes superdiffusion well, despite a different stochastic interpretation of the processes. Then, paradoxically, a subdiffusion equation with a fractional time derivative describes superdiffusion. The superdiffusive effect is achieved here not by making anomalously long jumps by a diffusing particle, but by greatly increasing the particle jump frequency. Some methods used in modeling of "ordinary" subdiffusion processes, such as the derivation of local boundary conditions at a thin partially permeable membrane, can be used to model gsubdiffusion processes, even if this process is interpreted as superdiffusion. We also use the g-subdiffusion equation to describe anomalous diffusion of antibiotic (colistin) in a system consisting of packed gel (alginate) beads immersed in water. Experimental results show that this process cannot be described by the "ordinary" subdiffusion equation with constant parameters. However, the g-subdiffusion equation with the function g derived from empirical data can be used to describe this process which is interpreted as subdiffusion with changing subdiffusion parameter (exponent) [4]. In addition, there is considered g-subdiffusion process of molecules that can be annihilated with a constant probability independent of time; molecule anihilation equation also includes the g-Caputo fractional derivative [5]. Such g-subdiffusion-anihilation model can be used to describe antibiotic diffusion in a bacterial biofilm.

References

- [1] T. Kosztołowicz, A. Dutkiewicz, Phys. Rev. E 104, 014118 (2021).
- [2] T. Kosztołowicz, A. Dutkiewicz, Phys. Rev. E 104, L042101 (2021).
- [3] T. Kosztołowicz, A. Dutkiewicz, Phys. Rev. E 106, 044119 (2022).
- [4] T. Kosztołowicz, A. Dutkiewicz, K.D. Lewandowska, S. Wąsik, M. Arabski, Phys. Rev. E 106, 044138 (2022).
- [5] T. Kosztołowicz, Phys. Rev. E 106, L022104 (2022).
- [6] T. Kosztołowicz, arXiv: 2210.11346v2 (2023).