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Quantum master equations refer to operator valued equations that describe open quantum systems via the 
evolution of their density matrix. Standard techniques, usually based on the associated symmetry group of 
the system, are applied to transform a master equation to a partial differential equation, a Fokker-Planck type 
equation (FPE), for a quasi-probability function defined on some underlying phase space. Quasi-probability 
functions, e.g. the Wigner function, the P, Q functions etc, supported by initial, boundary conditions 
determine the temporal evolution of the quantum system from which statistical predictions are obtained. 
One the other hand, the so called physics-informed neural networks, PINNs, based on deep learning ideas, is 
a recent kind of mathematical and computational solution methodology. PINNs are intended for solving 
various scientific and engineering problems involving ordinary or partial differential equations. The 
computational part is based on a developed open source machine learning platform, that includes the 
scientific software Tensorflow and an application programming interface Keras for deep learning applications. 
In this work both quantum master problems and PINNs are combined to address the solution of typical master 
equation problem. Specifically the problem of a single boson mode interacting with a nonlinear Kerr medium 
yields a third order nonlinear FPE. The equation describes the evolution of Wigner function defined in phase 
plane with symmetry group the Euclidean group ISO(2) and its algebra of generators i.e. plane translations 
and rotations. An architecture of the computational model provides two inputs: the time τ and the angle ϕ 
variables, hidden layers and one output W, the Wigner function. Providing initial and boundary conditions the 
unique solution of FPE is obtained everywhere on (τ,ϕ) domain. A learning is performed through training the 
PINN in order to fit the FPE, the initial condition (τ=0), the boundary conditions and the normalization integral 
of Wigner function over the circle at collocation points (training samples). An analysis of numerical results, 
including a loss function, a choice of a number of hidden layers, neurons, training iterations, samples 
(collocation points), batch sizes is given. Figures illustrating the evolution of model accuracy, model loss (mean 
squared error), the output of the neural network and predicted approximate solutions in the discretized 
domain (τ,ϕ) are provided. Numerical experiments show that the accuracy of computations mostly depends 
of the number of training epochs and the number of collocation points. Increase of number of hidden layers 
and neurons improves the convergence rate, at the cost of rapid increase of computation time. Thus, NN 
parameters should be chosen carefully to reach desired results. These issues confirm an efficiency of the 
introduced, PINN-in-quantum-master-equation, methodology. 

 


