Scale-free network architectures generated by nonlinear preferential attachment

Sergey Dorogovtsev

University of Aveiro, Aveiro, Portugal

The preferential attachment mechanism is one of possible origins of power-law degree distributions $P(q) \propto$ $q^{-\gamma}$ in complex networks. New vertices attach to existing ones with a probability proportional to a preference function of their degrees, $f(q)$. It is widely known that linear preference functions provide scale-free networks [1], while power-law preference functions with exponents distinct from 1 result in non-scale-free architectures [2]. It was noticed however that a linear asymptotics of the preference function turns out to be sufficient to get a power-law degree distribution, and that, for a recursive tree, even distorting a linear preference function at the smallest degree $q^{*}=1$, one can vary the exponent γ of the degree distribution within the range $(2, \infty)$ [2]. Remarkably, a small distortion of this kind produces a strong effect on γ.

We study the effect of the distortion of a linear preference function $f(q)=q+a$ at single degrees q^{*} on a shape of the degree distributions of recursive trees. Without this distortion, exponent $\gamma=3+a$, where $-1<a<\infty$. We find the explicit solution of the stationary limit of the rate equations for degree distributions and show that the effect of this distortion decreases with q^{*}.

For $q^{*}=2$, varying $f(2)$ in the range $(0, \infty)$, we obtain exponent γ in the range $\left(2, \gamma_{\max }(a)\right)$, where $\gamma_{\max }(a) \cong[(1+\sqrt{5}) / 2] a$ for large a. The factor $(1+\sqrt{5}) / 2=1.618 \ldots$ is the golden ratio. Further, for $q^{*}=$, varying $f(3)$ in the range $(0, \infty)$, we obtain exponent γ in the range $\left(\gamma_{\min }(a), \gamma_{\max }(a)\right)$, where $\gamma_{\min }(a) \cong 0.618 \ldots a$ and $\gamma_{\max }(a) \cong 1.247 \ldots a$ for large a.

For large $q^{\wedge} *$, the range of possible values of exponent γ becomes quite narrow, converging to $\gamma=3+a$ as $q^{*} \rightarrow \infty$. The limiting minimum value $\gamma_{\min }=2$ is approachable only in the narrow range of a close to -1 , namely for $-1<a<-1+1 /\left(\ln q^{*}+\gamma_{e}\right)$, where $\gamma_{e}=0.577$... is Euler's constant.

These results indicate the range of scale-free architectures produced by such manipulations of a preference function.

References
[1] S. N. Dorogovtsev, J. F. F. Mendes, The Nature of Complex Networks (Oxford University Press, Oxford, 2022).
[2] P. L. Krapivsky, S. Redner, Organization of growing random networks, Phys. Rev. E 63, 066123 (2001).

