Cancer invasion and progression: insights from agent-based models

Andreas Deutsch

Technische Universität Dresden, Germany

Cancer invasion may be viewed as collective phenomenon emerging in populations of normal and malignant cells. As such it can be studied with agent-based models, e.g. cellular automata. I will provide examples of such models to analyze breast and glioma invasion as well as the emergence of phenotypic heterogeneity due to cellular interactions in growing tumors. Furthermore, I will present models which shed light on cancer progression.

References

[1] A. Deutsch, J. M. Nava-Sedeño, S. Syga, H. Hatzikirou. BIO-LGCA: a cellular automaton modelling class for analysing collective cell migration. PLoS Comput Biol 17(6), e1009066 (2021).

[2] O. Ilina, P.G. Gritsenko, S. Syga, J. Lippoldt, C.A.M. La Porta, O. Chepizhko, S. Grosser, M. Vullings, G. Bakker, J. Starruß, P. Bult, S. Zapperi, J.A. Käs, A. Deutsch, P- Friedl. Cell–cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion. Nature Cell Biology 22, 1103–1115 (2020).

[3] A. Deutsch, S. Dormann. Cellular automaton modeling of biological pattern formation: characterization, examples, and analysis. Birkhauser, Basel (2018).