Dynamical chaos in the integrable Toda chain induced by time discretization

Carlo Danieli

Sapienza University Of Rome

Integrability is one of the fundamental concept of Hamiltonian mechanics. Although rare within the space of Hamiltonian systems, integrable models play a highly relevant role in physics, as several experimentally achieved systems posses integrable limits – i.e. specific parameter regimes where an Hamiltonian turns integrable – and around such regimes novel physical phenomena have often been found. However, compute the long time propagation of integrable systems is less than trivial, as we show that time-discretization lifts integrability and induces dynamical chaos. We use the integrable Toda chain to show that even one of the most used and developed numerical method in the community – the symplectic integration scheme – induce a finite Lyapunov time TL (inverse largest Lyapunov exponent) and eventually a breakdown time TB \gg TL where the simulations fail due to divergently large fluctuations. We discuss the dependence of these timescales on the chosen time step as well as on the chosen symplectic scheme.